ON THE BURAU REPRESENTATION FOR $n=4$

Anzor Beridze and Paweł Traczyk Batumi Shota Rustaveli State University a.beridze@bsu.edu.ge
Institute of Mathematics of University of Warsaw traczyk@mimuw.edu.pl
Department of Mathematics of

Batumi, Georgia
July 7, 2019

Abstract

The problem of faithfulness of the (reduced) Burau representation for $n=4$ is known to be equivalent to the problem of whether certain two matrices A and B generate a free group of rank two [Bir]. In [Ber-Tra1] we gave a simple proof that $\left\langle A^{3}, B^{3}\right\rangle$ is a free group of rank two, the result known earlier from [Wit-Zar]. In this paper we use a combination of methods of linear algebra and homology theory (the forks and noodles approach) [Ber-Tra2], [Big] to give another proof that $\left\langle A^{3}, B^{3}\right\rangle$ is a free group and some explanations which show why we believe that $\left\langle A^{2}, B^{2}\right\rangle$ should be a free group as well.
12345
${ }^{1}$ [Ber-Tra1] Beridze, A.; Traczyk, P. Burau representation for $n=4$. J. Knot Theory Ramifications 27 (2018), no. 3, 1840002, 6 pp .
${ }^{2}$ [Ber-Tra2] Beridze, A.; Traczyk, P. Forks, noodles and the Burau representation for $n=4$. Trans. A. Razmadze Math. Inst. 172 (2018), no. 3, part A, 337-353.
${ }^{3}$ [Bir] Joan S Birman. Braids, links, and mapping class groups. Annals of Mathematics Stidies, No. 82, Princeton University Press, Princeton, NJ (1974)
${ }^{4}$ [Big] Stephen Bigelow. The Burau representation is not faithful for $n=5$.
Geom. Topol. 3 (1999), 397-404
${ }^{5}$ [Wit-Zar] S. Witzel and M. C. B. Zaremsky. A free subgroup in the image of the
Anzor Beridze and Paweł Traczyk I Batumi, Georgia July 7, 2019

The Burau Representation, Noodles and Forks

The reduced Burau representation for $n=4$ is the homomorphism

$$
\begin{equation*}
\rho: B_{4} \rightarrow A u t\left(H_{1}\left(\tilde{D}_{4} ; Z\right)\right) \tag{1}
\end{equation*}
$$

which is defined by

$$
\begin{equation*}
\rho(\sigma)=\widetilde{\varphi}_{*}, \quad \forall \sigma \in B_{4}, \tag{2}
\end{equation*}
$$

where $\varphi: D_{4} \rightarrow D_{4}$ is a transformation which is representative of the element $\sigma \in B_{4}$. The group $H_{1}\left(\tilde{D}_{4} ; Z\right)$ is a free $Z\left[t, t^{-1}\right]$-module of rank 3 [Lon-Pat], [Big], [Ber-Tra2].

[^0]
The Burau Representation, Noodles and Forks

The reduced Burau representation for $n=4$ is the homomorphism

$$
\begin{equation*}
\rho: B_{4} \rightarrow A u t\left(H_{1}\left(\tilde{D}_{4} ; Z\right)\right) \tag{1}
\end{equation*}
$$

which is defined by

$$
\begin{equation*}
\rho(\sigma)=\widetilde{\varphi}_{*}, \quad \forall \sigma \in B_{4}, \tag{2}
\end{equation*}
$$

where $\varphi: D_{4} \rightarrow D_{4}$ is a transformation which is representative of the element $\sigma \in B_{4}$. The group $H_{1}\left(\tilde{D}_{4} ; Z\right)$ is a free $Z\left[t, t^{-1}\right]$-module of rank 3 [Lon-Pat], [Big], [Ber-Tra2]. On the other hand $H_{1}\left(\tilde{D}_{4} ; \mathbb{Z}\right)$ is a free $\mathbb{Z}\left[t, t^{-1}\right]$-module of rank 3 and if we take a basis of it, then Aut $\left(H_{1}\left(\tilde{D}_{4} ; \mathbb{Z}\right)\right)$ can be identified with $G L\left(3, \mathbb{Z}\left[t, t^{-1}\right]\right)$. 678
${ }^{6}$ [Lon-Pat] D. D.Long and M. Paton. The Burau representation is not faithful for $n \geq 6$. Topology 32 (1993), no. 2, 439-447
${ }^{7}$ [Big] Stephen Bigelow. The Burau representation is not faithful for $n=5$. Geom. Topol. 3 (1999), 397-404
${ }^{8}$ [Ber-Tra.2] Beridze, A.; Traczyk, P. Forks, noodles and the Burau representation for $n=4$. Trans. A. Razmadze Math. Inst. 172 (2018), no. 3, part A, 337-353.
Anzor Beridze and Paweł Traczyk I Batumi, Georgia July 7, 2019

The basis of the $\mathbb{Z}\left[t, t^{-1}\right]$-module $H_{1}\left(\tilde{D}_{4} ; \mathbb{Z}\right)$

Definition

A fork is an embedded oriented tree F in the disc D with four vertices p_{0}, p_{i}, p_{j} and z, where $i \neq j, i, j \in\{1,2,3,4\}$ such that (see [3]):
(1) F meets the puncture points only at p_{i} and p_{j};
(2) F meets the boundary ∂D_{4} only at p_{0};
(3) All three edges of F have z as a common vertex.

9
${ }^{9}$ [Big] Stephen Bigelow. The Burau representation is not faithful for $n=5$. Geom. Topol. 3 (1999), 397-404

The basis of the $\mathbb{Z}\left[t, t^{-1}\right]$-module $H_{1}\left(\tilde{D}_{4} ; \mathbb{Z}\right)$

The edge of F which contains p_{0} is called the handle. The union of the other two edges is denoted by $T(F)$ and it is called tine of F. Orient $T(F)$ so that the handle of F lies to the right of $T(F)[\mathrm{Big}]$.

10
${ }^{10}[\mathrm{Big}]$ Stephen Bigelow. The Burau representation is not faithful for $n=5$.
Geom. Topol. 3 (1999), 397-404

The basis of the $\mathbb{Z}\left[t, t^{-1}\right]$-module $H_{1}\left(\tilde{D}_{4} ; \mathbb{Z}\right)$

A Standard Fork

A standard fork $F_{i}, \quad i=1,2,3$ is the fork whose tine edge is the straight arc connecting the i-th and the (i+1)-st punctured points and whose handle has the form as in Figure below.

${ }^{11}$ [Big] Stephen Bigelow. The Burau representation is not faithful for $n=5$.
Geom. Topol. 3 (1999), 397-404

The basis of the $\mathbb{Z}\left[t, t^{-1}\right]$-module $H_{1}\left(\tilde{D}_{4} ; \mathbb{Z}\right)$

A Standard Fork

A standard fork $F_{i}, \quad i=1,2,3$ is the fork whose tine edge is the straight arc connecting the i -th and the (i+1)-st punctured points and whose handle has the form as in Figure below.

It is known that if F_{1}, F_{2} and F_{3} are the corresponding homology classes, then they form a basis of $H_{1}\left(\tilde{D}_{4} ; \mathbb{Z}\right)$ [Big]. 11
${ }^{11}$ [Big] Stephen Bigelow. The Burau representation is not faithful for $n=5$.
Geom. Topol. 3 (1999), 397-404

The basis of the $\mathbb{Z}\left[t, t^{-1}\right]$-module $H_{1}\left(\tilde{D}_{4} ; \mathbb{Z}\right)$

Using the basis derived from F_{1}, F_{2}, F_{3}, any automorphism

$$
\tilde{\varphi}_{*}: H_{1}\left(\tilde{D}_{4} ; \mathbb{Z}\right) \rightarrow H_{1}\left(\tilde{D}_{4} ; \mathbb{Z}\right)
$$

can be viewed as a 3×3 matrix with entries in the ring $\mathbb{Z}\left[t, t^{-1}\right][\mathrm{Big}]$. If $\varphi: D_{4} \rightarrow D_{4}$ is representing an element $\sigma \in B_{4}$, then we need to write the matrix $\rho(\sigma)=\widetilde{\varphi}_{*}$ in terms of homology (algebraic) intersection pairing

$$
\langle-,-\rangle: H_{1}\left(\tilde{D}_{4}, \partial \tilde{D}_{4} ; \mathbb{Z}\right) \times H_{1}\left(\tilde{D}_{4} ; \mathbb{Z}\right) \rightarrow \mathbb{Z}\left[t, t^{-1}\right]
$$

[^1]
The basis of the $\mathbb{Z}\left[t, t^{-1}\right]$-module $H_{1}\left(\tilde{D}_{4} ; \mathbb{Z}\right)$

Using the basis derived from F_{1}, F_{2}, F_{3}, any automorphism

$$
\widetilde{\varphi}_{*}: H_{1}\left(\tilde{D}_{4} ; \mathbb{Z}\right) \rightarrow H_{1}\left(\tilde{D}_{4} ; \mathbb{Z}\right)
$$

can be viewed as a 3×3 matrix with entries in the ring $\mathbb{Z}\left[t, t^{-1}\right][\mathrm{Big}]$. If $\varphi: D_{4} \rightarrow D_{4}$ is representing an element $\sigma \in B_{4}$, then we need to write the matrix $\rho(\sigma)=\widetilde{\varphi}_{*}$ in terms of homology (algebraic) intersection pairing

$$
\langle-,-\rangle: H_{1}\left(\tilde{D}_{4}, \partial \tilde{D}_{4} ; \mathbb{Z}\right) \times H_{1}\left(\tilde{D}_{4} ; \mathbb{Z}\right) \rightarrow \mathbb{Z}\left[t, t^{-1}\right]
$$

For this aim we need to define the noodles which represent relative homology classes in $H_{1}\left(\tilde{D}_{4}, \partial \tilde{D}_{4} ; \mathbb{Z}\right)$.
12
${ }^{12}$ [Big$]$ Stephen Bigelow. The Burau representation is not faithful for $n=5$.
Geom. Topol. 3 (1999), 397-404

The basis of the $\mathbb{Z}\left[t, t^{-1}\right]$-module $H_{1}\left(\tilde{D}_{4}, \partial \tilde{D}_{4} ; \mathbb{Z}\right)$

Definition

A noodle is an embedded oriented arc in D_{4}, which begins at the base point p_{0} and ends at some point of the boundary $\partial D_{4}[\mathrm{Big}]$.
${ }^{13}$ [Big] Stephen Bigelow. The Burau representation is not faithful for $n=5$. Geom. Topol. 3 (1999), 397-404

The basis of the $\mathbb{Z}\left[t, t^{-1}\right]$-module $H_{1}\left(\tilde{D}_{4}, \partial \tilde{D}_{4} ; \mathbb{Z}\right)$

Definition

A noodle is an embedded oriented arc in D_{4}, which begins at the base point p_{0} and ends at some point of the boundary $\partial D_{4}[\mathrm{Big}]$.

Standard noodles: $N_{1}, \quad N_{2}, \quad N_{3}$

13

${ }^{13}$ [Big] Stephen Bigelow. The Burau representation is not faithful for $n=5$.
Geom. Topol. 3 (1999), 397-404

The Noodle-Fors Pairing

For each $b \in H_{1}\left(\tilde{D}_{4}, \partial \tilde{D}_{4} ; \mathbb{Z}\right)$ and $a \in H_{1}\left(\tilde{D}_{4} ; \mathbb{Z}\right)$ we should take the corresponding fork N and noodle F and define the polynomial $\langle N, F\rangle \in$ $\mathbb{Z}\left[t, t^{-1}\right]$. It does not depend on the choice of representatives of homology classes and so

$$
\langle-,-\rangle: H_{1}\left(\tilde{D}_{4}, \partial \tilde{D}_{4} ; \mathbb{Z}\right) \times H_{1}\left(\tilde{D}_{4} ; \mathbb{Z}\right) \rightarrow \mathbb{Z}\left[t, t^{-1}\right]
$$

is well-defined [Big].

[^2]
The Noodle-Fors Pairing

For each $b \in H_{1}\left(\tilde{D}_{4}, \partial \tilde{D}_{4} ; \mathbb{Z}\right)$ and $a \in H_{1}\left(\tilde{D}_{4} ; \mathbb{Z}\right)$ we should take the corresponding fork N and noodle F and define the polynomial $\langle N, F\rangle \in$ $\mathbb{Z}\left[t, t^{-1}\right]$. It does not depend on the choice of representatives of homology classes and so

$$
\langle-,-\rangle: H_{1}\left(\tilde{D}_{4}, \partial \tilde{D}_{4} ; \mathbb{Z}\right) \times H_{1}\left(\tilde{D}_{4} ; \mathbb{Z}\right) \rightarrow \mathbb{Z}\left[t, t^{-1}\right]
$$

is well-defined [Big].
The map defined by the above formula is called the noodle-fork pairing. ${ }^{14}$

[^3]Geom. Topol. 3 (1999), 397-404

Geometric computation of noodle-forks pairing

Let $z_{1}, z_{2}, \ldots, z_{n}$ be the transversal intersection of N and F, ε_{i} be the sign of the intersection between $T(F)$ and N at z_{i} and $e_{i}=\left[\gamma_{i}\right]$ be the winding number of the loop γ_{i} around the puncture points $p_{1}, p_{2}, p_{3}, p_{4}$, where γ_{i} is the composition of three paths h, t_{i} and $\left.n_{i}: 1\right) h$ is a path from p_{0} to z along the handle of F (see Figure a); 2) t_{i} is a path from z to z_{i} along the tine $T(F)$ (see Figure b); 3) n_{i} is a path from z_{i} to p_{0} along the noodle N (see Figure c):

Images of the Generators $\sigma_{1}, \sigma_{2}, \sigma_{3}$ of the 4 -Braid group B_{4}

$$
a: e_{1}=-1
$$

$$
b: \gamma_{1}=n_{1} * t_{1} * h ; \varepsilon_{1}=1
$$

The intersection of the tine $T\left(F_{1} \sigma_{1}\right)$ of the fork $F_{1} \sigma_{1}$ and the noodle N_{1} at point z_{1} is negative which means that $\varepsilon_{i}=-1$ (see Figure a).

Images of the Generators $\sigma_{1}, \sigma_{2}, \sigma_{3}$ of the 4 -Braid group B_{4}

$$
a: e_{1}=-1 \quad b: \gamma_{1}=n_{1} * t_{1} * h ; \varepsilon_{1}=1
$$

The intersection of the tine $T\left(F_{1} \sigma_{1}\right)$ of the fork $F_{1} \sigma_{1}$ and the noodle N_{1} at point z_{1} is negative which means that $\varepsilon_{i}=-1$ (see Figure a). The winding number e_{1} of the loop γ_{1} (see Figure b) around puncture points equals 1 .

Images of the Generators $\sigma_{1}, \sigma_{2}, \sigma_{3}$ of the 4-Braid group B_{4}

$$
a: e_{1}=-1 \quad b: \gamma_{1}=n_{1} * t_{1} * h ; \varepsilon_{1}=1
$$

The intersection of the tine $T\left(F_{1} \sigma_{1}\right)$ of the fork $F_{1} \sigma_{1}$ and the noodle N_{1} at point z_{1} is negative which means that $\varepsilon_{i}=-1$ (see Figure a). The winding number e_{1} of the loop γ_{1} (see Figure b) around puncture points equals 1. Therefore

$$
\rho_{11}\left(\sigma_{1}\right)=\left\langle N_{1}, F_{1} \sigma_{1}\right\rangle=-t
$$

Geometric colsulation of $\rho_{i j}(\sigma)$

Lemma

Let $\sigma \in B_{n}$. Then for $1 \leq i, j \leq n-1$, the entry $\rho_{i j}(\sigma)$ of its Burau matrix $\rho(\sigma)$ is given by

$$
\rho_{i j}(\sigma)=\left\langle N_{i}, F_{j} \sigma\right\rangle
$$

1516

${ }^{15}$ [Big] Stephen Bigelow. The Burau representation is not faithful for $n=5$.
Geom. Topol. 3 (1999), 397-404
${ }^{16}$ [Mat-Ito] Matthieu Calvez and Tetsuya Ito. Garside-theoretic analysis of Burau representations. arXiv:1401.2677v2

Geometric colsulation of $\rho_{11}\left(\sigma_{1}\right)$

Under the convention adopted we have:

$$
\rho\left(\sigma_{1}\right)=\left(\begin{array}{ccc}
-t & t & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \rho\left(\sigma_{2}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & -t & t \\
0 & 0 & 1
\end{array}\right)
$$

and

$$
\rho\left(\sigma_{3}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & -t
\end{array}\right)
$$

1718

${ }^{17}$ [Ber-Tra.2] Beridze, A.; Traczyk, P. Forks, noodles and the Burau representation for $n=4$. Trans. A. Razmadze Math. Inst. 172 (2018), no. 3, part A, 337-353.
${ }^{18}$ [Dav] L. Davitaddze, Braid groups and Burau representation. Bachelor thesis, Batumi, 2019

The Bokut-Vesnin generators and kernel elements of the Burau representation

Let $\varphi: B_{4} \rightarrow B_{3}$ be the homomorphism defined by

$$
\varphi\left(\sigma_{1}\right)=\sigma_{1}, \quad \varphi\left(\sigma_{2}\right)=\sigma_{2}, \quad \varphi\left(\sigma_{3}\right)=\sigma_{1}
$$

The kernel of φ is known to be a free group $F(a, b)$ of two generators [Bok-Ves];

$$
a=\sigma_{1} \sigma_{2} \sigma_{3}^{-1} \sigma_{1} \sigma_{2}^{-1} \sigma_{1}^{-1}, \quad b=\sigma_{3} \sigma_{1}^{-1}
$$

[^4] braid groups. J. Symbolic Comput. 41 (2006), no. 3-4, $357-371$.

The Bokut-Vesnin generators and kernel elements of the Burau representation

Let $\varphi: B_{4} \rightarrow B_{3}$ be the homomorphism defined by

$$
\varphi\left(\sigma_{1}\right)=\sigma_{1}, \quad \varphi\left(\sigma_{2}\right)=\sigma_{2}, \quad \varphi\left(\sigma_{3}\right)=\sigma_{1}
$$

The kernel of φ is known to be a free group $F(a, b)$ of two generators [Bok-Ves];

$$
a=\sigma_{1} \sigma_{2} \sigma_{3}^{-1} \sigma_{1} \sigma_{2}^{-1} \sigma_{1}^{-1}, \quad b=\sigma_{3} \sigma_{1}^{-1}
$$

This was proved by L. Bokut and A. Vesnin [Bok-Vis]. 19

[^5] braid groups. J. Symbolic Comput. 41 (2006), no. 3-4, $357-371$.

The Bokut-Vesnin generators and kernel elements of the Burau representation

We will refer to a and b as the Bokut-Vesnin generators:

$$
a=\sigma_{1} \sigma_{2} \sigma_{3}^{-1} \sigma_{1} \sigma_{2}^{-1} \sigma_{1}^{-1}, \quad b=\sigma_{3} \sigma_{1}^{-1}
$$

[^6]
The Bokut-Vesnin generators and kernel elements of the Burau representation

We will refer to a and b as the Bokut-Vesnin generators:

$$
a=\sigma_{1} \sigma_{2} \sigma_{3}^{-1} \sigma_{1} \sigma_{2}^{-1} \sigma_{1}^{-1}, \quad b=\sigma_{3} \sigma_{1}^{-1}
$$

The generators a and b are in fact much more similar than they look at the first glance:

$\underline{20}$
${ }^{20}$ [Ber-Tra.2] Beridze, A.; Traczyk, P. Forks, noodles and the Burau representation for $n=4$. Trans. A. Razmadze Math. Inst. 172 (2018), no. B, part A, 337-353.๑のल

The Bokut-Vesnin generators and kernel elements of the Burau representation

Proposition

The kernel ker ρ_{4} of the Burau representation map

$$
\rho_{4}: B_{4} \rightarrow G L\left(3, \mathbb{Z}\left[t, t^{-1}\right]\right)
$$

is a subgroup of the kernel $\operatorname{ker} \varphi$ of the map $\varphi: B_{4} \rightarrow B_{3}$, defined above by

$$
\varphi\left(\sigma_{1}\right)=\sigma_{1}, \quad \varphi\left(\sigma_{2}\right)=\sigma_{2}, \quad \varphi\left(\sigma_{3}\right)=\sigma_{1}
$$

Therefore

$$
\operatorname{ker} \rho_{4} \subset \operatorname{ker} \varphi
$$

The Bokut-Vesnin generators and kernel elements of the Burau representation

Proof. Let us make a slight detour into the realm of the Temperley-Lieb algebras $T L_{3}$ and $T L_{4}$. The Temperley-Lieb algebra $T L_{n}$ is defined as an algebra over $\mathbb{Z}\left[t, t^{-1}\right]$. It has $n-1$ generators $\left\{U_{i}^{i}\right\}_{i=1}^{n-1}$, and the following relations:
(TL1) $U_{i}^{i} U_{i}^{i}=\left(-t^{-2}-t^{2}\right) U_{i}^{i}$,
(TL2) $U_{i}^{i} U_{j}^{j} U_{i}^{i}=U_{i}^{i}$, for $|i-j|=1$,
(TL3) $U_{i}^{i} U_{j}^{j}=U_{j}^{j} U_{i}^{i}$, for $|i-j|>1$.

The Bokut-Vesnin generators and kernel elements of the Burau representation

Proof. Let us make a slight detour into the realm of the Temperley-Lieb algebras $T L_{3}$ and $T L_{4}$. The Temperley-Lieb algebra $T L_{n}$ is defined as an algebra over $\mathbb{Z}\left[t, t^{-1}\right]$. It has $n-1$ generators $\left\{U_{i}^{i}\right\}_{i=1}^{n-1}$, and the following relations:
(TL1) $U_{i}^{i} U_{i}^{i}=\left(-t^{-2}-t^{2}\right) U_{i}^{i}$,
(TL2) $U_{i}^{i} U_{j}^{j} U_{i}^{i}=U_{i}^{i}$, for $|i-j|=1$,
(TL3) $U_{i}^{i} U_{j}^{j}=U_{j}^{j} U_{i}^{i}$, for $|i-j|>1$.

The Bokut-Vesnin generators and kernel elements of the Burau representation

Let us consider the homomorphism $\psi: T L_{4} \rightarrow T L_{3}$ defined by

$$
U_{1}^{1} \rightarrow U_{1}^{1}, U_{2}^{2} \rightarrow U_{2}^{2}, U_{3}^{3} \rightarrow U_{1}^{1}
$$

Let $\theta: B_{n} \rightarrow T L_{n}$ be the Jones' representation defined by sending σ_{i} to $A+A^{-1} U_{i}^{i}$. It is known (see [Big.2], Proposition 1.5) that for $n=3,4$ we have $\operatorname{ker} \theta_{n}=\operatorname{ker} \rho_{n}$. Moreover, the following diagram is obviously commutative:

[^7] Theory and Ramifications (4) 11 (2002). 493-505

The Bokut-Vesnin generators and kernel elements of the Burau representation

Let us consider the homomorphism $\psi: T L_{4} \rightarrow T L_{3}$ defined by

$$
U_{1}^{1} \rightarrow U_{1}^{1}, U_{2}^{2} \rightarrow U_{2}^{2}, U_{3}^{3} \rightarrow U_{1}^{1}
$$

Let $\theta: B_{n} \rightarrow T L_{n}$ be the Jones' representation defined by sending σ_{i} to $A+A^{-1} U_{i}^{i}$. It is known (see [Big.2], Proposition 1.5) that for $n=3,4$ we have $\operatorname{ker} \theta_{n}=\operatorname{ker} \rho_{n}$. Moreover, the following diagram is obviously commutative:

$$
\begin{array}{cc}
B_{4} \\
\varphi \downarrow \\
B_{3} \xrightarrow[\theta_{3}]{ } & T L_{4} \\
& \\
& \stackrel{\theta_{4}}{ }
\end{array}
$$

The representation θ_{3} is faithful and therefore $\operatorname{ker} \rho_{4}=\operatorname{ker} \theta_{4} \subset \operatorname{ker} \varphi$. $\underline{21}$
${ }^{21}$ [Big.2] Stephen Bigelow. Does the Jones polynomial detect the unknot? J. Knot Theory and Ramifications (4) 11 (2002). 493-505

Images of The Bokut-Vesnin generators

Under the convention adopted we have:

$$
A=\rho(a)=\left(\begin{array}{ccc}
-t+1 & 0 & -1 \\
-t+t & -t & 0 \\
-t & 0 & 0
\end{array}\right), \quad B=\rho(b)=\left(\begin{array}{ccc}
-t^{-1} & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & -t
\end{array}\right)
$$

$\underline{22 \quad 23}$
${ }^{22}$ [Ber-Tra.3] Beridze, A.; Traczyk, P. On the Burau representation for $n=4$. arXiv:1904.11730
${ }^{23}[\mathrm{Dav}]$ L. Davitaddze, Braid groups and Burau representation. Bachelor thesis, Batumi, 2019

Turning the punctured disk D_{4} by ninety degrees

Let t be a transformation of D_{4}, which has the following form:

2425
${ }^{24}$ [Ber-Tra.3] Beridze, A.; Traczyk, P. On the Burau representation for $n=4$. arXiv:1904.11730
${ }^{25}[\mathrm{Dav}]$ L. Davitaddze, Braid groups and Burau representation. Bachelor thesis, Batumi, 2019

Turning the punctured disk D_{4} by ninety degrees

Therefore, t is reresantatiove of the braid is $\sigma_{1} \sigma_{2} \sigma_{3}$:

$$
\begin{array}{ccc}
\sigma_{1} & \sigma_{2} & \sigma_{3}
\end{array}
$$

2627
${ }^{26}$ [Ber-Tra.3] Beridze, A.; Traczyk, P. On the Burau representation for $n=4$. arXiv:1904.11730
${ }^{27}$ [Dav] L. Davitaddze, Braid groups and Burau representation. Bachelor thesis, Batumi, 2019

Conjugating a, a^{-1} and b^{-1} to b

It is easy to check that the following conditions are satisfied:

$$
a=t^{-1} b t, \quad a^{-1}=t b t^{-1}, \quad b^{-1}=t^{2} b t^{2}
$$

Conjugating a^{-1} to b

$$
t b t^{-1}=\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{1}^{-1} \sigma_{3} \sigma_{3}^{-1} \sigma_{2}^{-1} \sigma_{1}^{-1}
$$

$$
a^{-1}=\sigma_{1} \sigma_{2} \sigma_{1}^{-1} \sigma_{3} \sigma_{2}^{-1} \sigma_{1}^{-1}
$$

conjugating a, a^{-1} and b^{-1} to b

Lemma

There exists a matrix T which satisfies the following equality:

$$
\begin{equation*}
A=T B T^{-1}, \quad A^{-1}=T^{-1} B T, \quad B^{-1}=T^{2} B T^{2} \tag{3}
\end{equation*}
$$

The considered matrix T is of order four as an element of the group $G L\left(3, \mathbb{Z}\left[t, t^{-1}\right]\right)$.
${ }^{28}$ [Ber-Tra.3] Beridze, A.; Traczyk, P. On the Burau representation for $n=4$. arXiv:1904.11730

Conjugating A, A^{-1} and B^{-1} to B

Proof the matrices A, B, A^{-1} and B^{-1} have the same eigenvalues $-t^{-1},-t$ and 1. Therefore, they are conjugate to the same diagonal matrix:

$$
\Delta=\left[\begin{array}{ccc}
-t^{-1} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -t
\end{array}\right]
$$

Conjugating A, A^{-1} and B^{-1} to B

Proof the matrices A, B, A^{-1} and B^{-1} have the same eigenvalues $-t^{-1},-t$ and 1. Therefore, they are conjugate to the same diagonal matrix:

$$
\Delta=\left[\begin{array}{ccc}
-t^{-1} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -t
\end{array}\right]
$$

Let us consider transformation matrices T_{A} and T_{B}

$$
T_{A}=\left[\begin{array}{ccc}
-1 & t^{-1} & 0 \\
-1 & t^{-1}-1 & 1 \\
-1 & -1 & 0
\end{array}\right], \quad T_{B}=\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & t^{-1}+1 & 0 \\
0 & t^{-1} & 1
\end{array}\right]
$$

Therefore, the following equalities hold:

$$
A=T_{A} \Delta T_{A}^{-1}, \quad B=T_{B} \Delta T_{B}^{-1}
$$

Hence, we obtain that

$$
A=T_{A} T_{B}^{-1} B T_{B} T_{A}^{-1}
$$

conjugating a, a^{-1} and b^{-1} to b

Let $T=T_{A} T_{B}^{-1}$, then we have:

$$
T=\rho(t)=\left[\begin{array}{lll}
-1 & 1 & 0 \\
-1 & 0 & 1 \\
-1 & 0 & 0
\end{array}\right]
$$

conjugating a, a^{-1} and b^{-1} to b

Let $T=T_{A} T_{B}^{-1}$, then we have:

$$
T=\rho(t)=\left[\begin{array}{lll}
-1 & 1 & 0 \\
-1 & 0 & 1 \\
-1 & 0 & 0
\end{array}\right]
$$

On the other hand, direct calculation shows that

$$
T^{4}=1, \quad A=T^{-1} B T, \quad A^{-1}=T B T^{-1}, \quad B^{-1}=T^{2} B T^{2} .
$$

Corollary

Let w be a formally irreducible non-empty word in letters A, B, A^{-1} and B^{-1} with suffix $B^{i}, i \geq 1$. Then the corresponding product of matrices A, B, A^{-1} and B^{-1} may be written in the form $T^{m_{k+1}} B^{n_{k+1}} T^{m_{k}} B^{n_{k}} \cdots T^{m_{2}} B^{n_{2}} T^{m_{1}} B^{n_{1}} n_{i} \in N, m_{i} \in\{-1,1\}$, $m_{k+1} \in\{-1,0,1,2\}$.
${ }^{30}$ [Ber-Tra.3] Beridze, A.; Traczyk, P. On the Burau representation for $n=4$. arXiv:1904.11730

s-patterns

s-pattern: This means a one column matrix in which the position of entries with minimum degree (in the first column of the considered matrix) are checked.

[^8]
s-patterns

s-pattern: This means a one column matrix in which the position of entries with minimum degree (in the first column of the considered matrix) are checked. For example $\left[\begin{array}{l}\sqrt{0} \\ 0 \\ 0\end{array}\right]$ means that in the first column of the considered matrix there is a single entry of the smallest degree and that it is in position $(1,1)$.

[^9]
$s-$ patterns

s-pattern: This means a one column matrix in which the position of entries with minimum degree (in the first column of the considered matrix) are checked. For example $\left[\begin{array}{l}\sqrt{ } \\ 0 \\ 0\end{array}\right]$ means that in the first column of the considered matrix there is a single entry of the smallest degree and that it is in position $(1,1)$. Altogether seven possible s-patterns exist as given below:

$$
\left[\begin{array}{l}
0 \\
0 \\
\sqrt{ }
\end{array}\right],\left[\begin{array}{l}
0 \\
\sqrt{ } \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
\sqrt{ } \\
\sqrt{ }
\end{array}\right],\left[\begin{array}{l}
\sqrt{ } \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
\sqrt{ }
\end{array}\right],\left[\begin{array}{l}
\sqrt{ } \\
\sqrt{ } \\
\sqrt{ }
\end{array}\right]
$$

31

[^10]
transformations of s-patterns - multiplication by B

Multiplication by B from the left side may affect $s-$ patterns as illustrated in Figure:

Figure 3: transformations of s-patterns - multiplication by B

transformations of s-patterns - multiplication by T

Multiplication by T may affect s-patterns as illustrated in Figure:

Figure 4: transformations of s-patterns - multiplication by T

Some imposible composition

Lemma

Let M be a matrix of s-pattern $\left[\begin{array}{l}0 \\ \sqrt{ } \\ \sqrt{ }\end{array}\right]$ or $\left[\begin{array}{l}0 \\ \sqrt{ } \\ 0\end{array}\right]$. Then the transformations corresponding to multiplication (step by step) on the left side by $B T B B$ can not be of the following form:

$$
\begin{aligned}
& {\left[\begin{array}{c}
\circ \\
\sqrt{ } \\
\sqrt{ }
\end{array}\right] \xrightarrow{B}\left[\begin{array}{c}
\circ \\
\sqrt{ } \\
\sqrt{ }
\end{array}\right] \xrightarrow{B}\left[\begin{array}{l}
\sqrt{ } \\
\sqrt{ } \\
\sqrt{ }
\end{array}\right] \xrightarrow{T}\left[\begin{array}{c}
\circ \\
0 \\
\sqrt{ }
\end{array}\right] \xrightarrow{B}\left[\begin{array}{l}
\circ \\
\circ \\
\sqrt{ }
\end{array}\right],} \\
& {\left[\begin{array}{c}
\circ \\
\sqrt{ } \\
\circ
\end{array}\right] \xrightarrow{B}\left[\begin{array}{c}
0 \\
\sqrt{ } \\
\sqrt{ }
\end{array}\right] \xrightarrow{B}\left[\begin{array}{l}
\sqrt{ } \\
\sqrt{ } \\
\sqrt{ }
\end{array}\right] \xrightarrow{T}\left[\begin{array}{c}
0 \\
0 \\
\sqrt{ }
\end{array}\right] \xrightarrow{B}\left[\begin{array}{l}
0 \\
\circ \\
\sqrt{ }
\end{array}\right] .}
\end{aligned}
$$

32

${ }^{32}$ [Ber-Tra.1] Beridze, A.; Traczyk, P. Burau representation for $n=4$. J. Knot Theory Ramifications 27 (2018), no. 3, 1840002, 6 pp.

No negative loop

Main Lemma

Let ω be a word of the letters B, T and T^{-1} of the following form

$$
\begin{equation*}
\omega=T^{m_{k}} B^{n_{k}} \cdots T^{m_{2}} B^{n_{2}} T^{m_{1}} B^{n_{1}}, \quad n_{i} \in \mathbb{N}, m_{i} \in\{-1,1\} . \tag{4}
\end{equation*}
$$

If for every i we have $n_{i} \geq 3$, then none of transformations corresponding to any single letter in the considered word is a negative loop.
${ }^{33}$ [Ber-Tra.1] Beridze, A.; Traczyk, P. Burau representation for $n=4$. J. Knot Theory Ramifications 27 (2018), no. 3, 1840002, 6 pp.

Group generated by A^{3} and B^{3}

Corollary

Let ω be a word of the form

$$
\begin{equation*}
\omega=T^{m_{k+1}} B^{n_{k}} T^{m_{k}} \cdots T^{m_{2}} B^{n_{2}} T^{m_{1}} B^{n_{1}} \tag{5}
\end{equation*}
$$

where $\quad n_{i} \geq 3 \quad m_{i} \in\{-1,1\}, \quad m_{k+1} \in-1,0,1,2$. Then the change in the minimum degree of first column entries caused by multiplication by $T^{i} B^{r}$ may be:

1. a decrease (possibly by more than 1);
2. no change at all;
3. an increase by exactly 1 .

Group generated by A^{3} and B^{3}

Corollary

Let ω be a word of the form

$$
\begin{equation*}
\omega=T^{m_{k+1}} B^{n_{k}} T^{m_{k}} \cdots T^{m_{2}} B^{n_{2}} T^{m_{1}} B^{n_{1}} \tag{5}
\end{equation*}
$$

where $\quad n_{i} \geq 3 \quad m_{i} \in\{-1,1\}, \quad m_{k+1} \in-1,0,1,2$. Then the change in the minimum degree of first column entries caused by multiplication by $T^{i} B^{r}$ may be:

1. a decrease (possibly by more than 1);
2. no change at all;
3. an increase by exactly 1 .

Theorem

The matrices A^{3} and B^{3} generate a non-abelian free group of rank 2.

Thank You!

[^0]: ${ }^{6}$ [Lon-Pat] D. D.Long and M. Paton. The Burau representation is not faithful for $n \geq 6$. Topology 32 (1993), no. 2, 439-447
 ${ }^{7}[\mathrm{Big}]$ Stephen Bigelow. The Burau representation is not faithful for $n=5$. Geom. Topol. 3 (1999), 397-404
 ${ }^{8}$ [Ber-Tra.2] Beridze, A.; Traczyk, P. Forks, noodles and the Burau representation for $n=4$. Trans. A. Razmadze Math. Inst. 172 (2018), no. B, part A, 337-353.
 Anzor Beridze and Paweł Traczyk I Batumi, Georgia July 7, 2019

[^1]: ${ }^{12}$ [Big] Stephen Bigelow. The Burau representation is not faithful for $n=5$. Geom. Topol. 3 (1999), 397-404

[^2]: ${ }^{14}$ [Big] Stephen Bigelow. The Burau representation is not faithful for $n=5$. Geom. Topol. 3 (1999), 397-404

[^3]: ${ }^{14}$ [Big] Stephen Bigelow. The Burau representation is not faithful for $n=5$.

[^4]: ${ }^{19}$ [Bok-Ves] Bokut, Leonid; Vesnin, Andrei. Gröbner-Shirshov bases for some

[^5]: ${ }^{19}$ [Bok-Ves] Bokut, Leonid; Vesnin, Andrei. Gröbner-Shirshov bases for some

[^6]: ${ }^{20}$ [Ber-Tra.2] Beridze, A.; Traczyk, P. Forks, noodles and the Burau representation for $n=4$. Trans. A. Razmadze Math. Inst. 172 (2018), no. 3, part A, 337-353.

[^7]: ${ }^{21}$ [Big.2] Stephen Bigelow. Does the Jones polynomial detect the unknot? J. Knot

[^8]: ${ }^{31}$ [Ber-Tra.1] Beridze, A.; Traczyk, P. Burau representation for $n=4$. J. Knot Theory Ramifications 27 (2018), no. 3, 1840002, 6 pp.

[^9]: ${ }^{31}$ [Ber-Tra.1] Beridze, A.; Traczyk, P. Burau representation for $n=4$. J. Knot Theory Ramifications 27 (2018), no. 3, 1840002, 6 pp.

[^10]: ${ }^{31}$ [Ber-Tra.1] Beridze, A.; Traczyk, P. Burau representation for $n=4$. J. Knot Theory Ramifications 27 (2018), no. 3, 1840002, 6 pp.

