ON THE BURAU REPRESENTATION FOR n = 4

<u>Anzor Beridze</u> and Paweł Traczyk Batumi Shota Rustaveli State University a.beridze@bsu.edu.ge Institute of Mathematics of University of Warsaw traczyk@mimuw.edu.pl Department of Mathematics of

> Batumi, Georgia July 7, 2019

Abstract

The problem of faithfulness of the (reduced) Burau representation for n = 4 is known to be equivalent to the problem of whether certain two matrices A and B generate a free group of rank two [Bir]. In [Ber-Tra1] we gave a simple proof that $\langle A^3, B^3 \rangle$ is a free group of rank two, the result known earlier from [Wit-Zar]. In this paper we use a combination of methods of linear algebra and homology theory (the forks and noodles approach) [Ber-Tra2], [Big] to give another proof that $\langle A^3, B^3 \rangle$ is a free group and some explanations which show why we believe that $\langle A^2, B^2 \rangle$ should be a free group as well.

1 2 3 4 5

¹[Ber-Tra1] Beridze, A.; Traczyk, P. Burau representation for n = 4. J. Knot Theory Ramifications 27 (2018), no. 3, 1840002, 6 pp.

²[Ber-Tra2] Beridze, A.; Traczyk, P. Forks, noodles and the Burau representation for n = 4. Trans. A. Razmadze Math. Inst. 172 (2018), no. 3, part A, 337–353.

³[Bir] Joan S Birman. Braids, links, and mapping class groups. Annals of Mathematics Stidies, No. 82, Princeton University Press, Princeton, NJ (1974)

⁴[Big] Stephen Bigelow. The Burau representation is not faithful for n = 5. Geom. Topol. 3 (1999), 397-404

⁵[Wit-Zar] S. Witzel and M. C. B. Zaremsky. A free subgroup in the image of the <u>Anzor Beridze</u> and Pawel Traczyk I Batumi, Georgia July 7, 2019

The Burau Representation, Noodles and Forks

The reduced Burau representation for n = 4 is the homomorphism

$$\rho: B_4 \to Aut\left(H_1\left(\tilde{D}_4; Z\right)\right) \tag{1}$$

which is defined by

$$\rho\left(\sigma\right) = \widetilde{\varphi}_*, \quad \forall \sigma \in B_4, \tag{2}$$

where $\varphi: D_4 \to D_4$ is a transformation which is representative of the element $\sigma \in B_4$. The group $H_1(\tilde{D}_4; Z)$ is a free $Z[t, t^{-1}]$ -module of rank 3 [Lon-Pat], [Big], [Ber-Tra2].

 $^{^6[\}text{Lon-Pat}]$ D. D.Long and M. Paton. The Burau representation is not faithful for $n\geq 6.$ Topology **32** (1993), no. 2, 439–447

⁷[Big] Stephen Bigelow. The Burau representation is not faithful for n = 5. Geom. Topol. 3 (1999), 397-404

⁸[Ber-Tra.2] Beridze, A.; Traczyk, P. Forks, noodles and the Burau representation for n = 4. Trans. A. Razmadze Math. Inst. 172 (2018), no. 3, part A, 337–353. Anzor Beridze and Pawet Traczyk I Batumi, Georgia July 7, 2019

The Burau Representation, Noodles and Forks

The reduced Burau representation for n = 4 is the homomorphism

$$\rho: B_4 \to Aut\left(H_1\left(\tilde{D}_4; Z\right)\right) \tag{1}$$

which is defined by

$$\rho(\sigma) = \widetilde{\varphi}_*, \quad \forall \sigma \in B_4, \tag{2}$$

where $\varphi : D_4 \to D_4$ is a transformation which is representative of the element $\sigma \in B_4$. The group $H_1(\tilde{D}_4; Z)$ is a free $Z[t, t^{-1}]$ -module of rank 3 [Lon-Pat], [Big], [Ber-Tra2]. On the other hand $H_1(\tilde{D}_4; \mathbb{Z})$ is a free $\mathbb{Z}[t, t^{-1}]$ -module of rank 3 and if we take a basis of it, then $Aut\left(H_1\left(\tilde{D}_4; \mathbb{Z}\right)\right)$ can be identified with $GL(3, \mathbb{Z}[t, t^{-1}])$.

 $^6[\text{Lon-Pat}]$ D. D.Long and M. Paton. The Burau representation is not faithful for $n\geq 6.~Topology$ **32** (1993), no. 2, 439—447

 $^7[{\rm Big}]$ Stephen Bigelow. The Burau representation is not faithful for n=5. Geom. Topol. 3 (1999), 397-404

⁸[Ber-Tra.2] Beridze, A.; Traczyk, P. Forks, noodles and the Burau representation for n = 4. Trans. A. Razmadze Math. Inst. 172 (2018), no. 3, part A, 337-353.

The basis of the $\mathbb{Z}[t, t^{-1}]$ -module $H_1\left(\tilde{D}_4; \mathbb{Z}\right)$

Definition

A fork is an embedded oriented tree F in the disc D with four vertices p_0, p_i, p_j and z, where $i \neq j, i, j \in \{1, 2, 3, 4\}$ such that (see [3]):

- F meets the puncture points only at p_i and p_j ;
- **2** F meets the boundary ∂D_4 only at p_0 ;
- **3** All three edges of F have z as a common vertex.

9

⁹[Big] Stephen Bigelow. The Burau representation is not faithful for n = 5. Geom. Topol. 3 (1999), 397-404

Anzor Beridze and Paweł Traczyk I

The basis of the $\mathbb{Z}[t, t^{-1}]$ -module $H_1(\tilde{D}_4; \mathbb{Z})$

The edge of F which contains p_0 is called the **handle**. The union of the other two edges is denoted by T(F) and it is called **time of** F. Orient T(F) so that the handle of F lies to the right of T(F) [Big].

10

¹⁰[Big] Stephen Bigelow. The Burau representation is not faithful for n = 5. Geom. Topol. 3 (1999), 397-404

Anzor Beridze and Paweł Traczyk I

The basis of the $\mathbb{Z}[t, t^{-1}]$ -module $H_1\left(\tilde{D}_4; \mathbb{Z}\right)$

A Standard Fork

A standard fork F_i , i = 1, 2, 3 is the fork whose time edge is the straight arc connecting the i-th and the (i+1)-st punctured points and whose handle has the form as in Figure below.

¹¹[Big] Stephen Bigelow. The Burau representation is not faithful for n = 5. Geom. Topol. 3 (1999), 397-404

Anzor Beridze and Paweł Traczyk I

The basis of the $\mathbb{Z}[t, t^{-1}]$ -module $H_1\left(\tilde{D}_4; \mathbb{Z}\right)$

A Standard Fork

A standard fork F_i , i = 1, 2, 3 is the fork whose time edge is the straight arc connecting the i-th and the (i+1)-st punctured points and whose handle has the form as in Figure below.

It is known that if F_1 , F_2 and F_3 are the corresponding homology classes, then they form a basis of $H_1\left(\tilde{D}_4;\mathbb{Z}\right)$ [Big].

¹¹[Big] Stephen Bigelow. The Burau representation is not faithful for n = 5. Geom. Topol. 3 (1999), 397-404

Anzor Beridze and Paweł Traczyk I

The basis of the $\mathbb{Z}[t, t^{-1}]$ -module $\underline{H_1}\left(\tilde{D}_4; \mathbb{Z}\right)$

Using the basis derived from F_1, F_2, F_3 , any automorphism

$$\widetilde{\varphi}_*: H_1\left(\widetilde{D}_4; \mathbb{Z}\right) \to H_1\left(\widetilde{D}_4; \mathbb{Z}\right)$$

can be viewed as a 3×3 matrix with entries in the ring $\mathbb{Z}[t, t^{-1}]$ [Big]. If $\varphi: D_4 \to D_4$ is representing an element $\sigma \in B_4$, then we need to write the matrix $\rho(\sigma) = \tilde{\varphi}_*$ in terms of homology (algebraic) intersection pairing

$$\langle -, - \rangle : H_1\left(\tilde{D}_4, \partial \tilde{D}_4; \mathbb{Z}\right) \times H_1\left(\tilde{D}_4; \mathbb{Z}\right) \to \mathbb{Z}\left[t, t^{-1}\right]$$

¹²[Big] Stephen Bigelow. The Burau representation is not faithful for n = 5. Geom. Topol. 3 (1999), 397-404

Anzor Beridze and Paweł Traczyk I

The basis of the $\mathbb{Z}[t, t^{-1}]$ -module $H_1\left(\tilde{D}_4; \mathbb{Z}\right)$

Using the basis derived from F_1, F_2, F_3 , any automorphism

$$\widetilde{\varphi}_*: H_1\left(\widetilde{D}_4; \mathbb{Z}\right) \to H_1\left(\widetilde{D}_4; \mathbb{Z}\right)$$

can be viewed as a 3×3 matrix with entries in the ring $\mathbb{Z}[t, t^{-1}]$ [Big]. If $\varphi : D_4 \to D_4$ is representing an element $\sigma \in B_4$, then we need to write the matrix $\rho(\sigma) = \tilde{\varphi}_*$ in terms of homology (algebraic) intersection pairing

$$\langle -, - \rangle : H_1\left(\tilde{D}_4, \partial \tilde{D}_4; \mathbb{Z}\right) \times H_1\left(\tilde{D}_4; \mathbb{Z}\right) \to \mathbb{Z}\left[t, t^{-1}\right].$$

For this aim we need to define the noodles which represent relative homology classes in $H_1\left(\tilde{D}_4,\partial\tilde{D}_4;\mathbb{Z}\right)$.

¹²[Big] Stephen Bigelow. The Burau representation is not faithful for n = 5. Geom. Topol. 3 (1999), 397-404

Anzor Beridze and Paweł Traczyk I

¹²

The basis of the $\mathbb{Z}[t, t^{-1}]$ -module $H_1\left(\tilde{D}_4, \partial \tilde{D}_4; \mathbb{Z}\right)$

Definition

A noodle is an embedded oriented arc in D_4 , which begins at the base point p_0 and ends at some point of the boundary ∂D_4 [Big].

¹³[Big] Stephen Bigelow. The Burau representation is not faithful for n = 5. Geom. Topol. 3 (1999), 397-404

Anzor Beridze and Paweł Traczyk I

The basis of the $\mathbb{Z}[t, t^{-1}]$ -module $H_1\left(\tilde{D}_4, \partial \tilde{D}_4; \mathbb{Z}\right)$

Definition

A noodle is an embedded oriented arc in D_4 , which begins at the base point p_0 and ends at some point of the boundary ∂D_4 [Big].

Standard noodles: N_1 , N_2 , N_3

13

¹³[Big] Stephen Bigelow. The Burau representation is not faithful for n = 5. Geom. Topol. 3 (1999), 397-404

Anzor Beridze and Paweł Traczyk I

For each $b \in H_1\left(\tilde{D}_4, \partial \tilde{D}_4; \mathbb{Z}\right)$ and $a \in H_1\left(\tilde{D}_4; \mathbb{Z}\right)$ we should take the corresponding fork N and noodle F and define the polynomial $\langle N, F \rangle \in \mathbb{Z}[t, t^{-1}]$. It does not depend on the choice of representatives of homology classes and so

$$\langle -, - \rangle : H_1\left(\tilde{D}_4, \partial \tilde{D}_4; \mathbb{Z}\right) \times H_1\left(\tilde{D}_4; \mathbb{Z}\right) \to \mathbb{Z}\left[t, t^{-1}\right]$$

is well-defined [Big].

¹⁴[Big] Stephen Bigelow. The Burau representation is not faithful for n = 5. Geom. Topol. 3 (1999), 397-404

Anzor Beridze and Paweł Traczyk I

For each $b \in H_1\left(\tilde{D}_4, \partial \tilde{D}_4; \mathbb{Z}\right)$ and $a \in H_1\left(\tilde{D}_4; \mathbb{Z}\right)$ we should take the corresponding fork N and noodle F and define the polynomial $\langle N, F \rangle \in \mathbb{Z}[t, t^{-1}]$. It does not depend on the choice of representatives of homology classes and so

$$\langle -, - \rangle : H_1\left(\tilde{D}_4, \partial \tilde{D}_4; \mathbb{Z}\right) \times H_1\left(\tilde{D}_4; \mathbb{Z}\right) \to \mathbb{Z}\left[t, t^{-1}\right]$$

is well-defined [Big].

The map defined by the above formula is called the **noodle–fork pairing.** 14

¹⁴[Big] Stephen Bigelow. The Burau representation is not faithful for n = 5. Geom. Topol. 3 (1999), 397-404

Anzor Beridze and Paweł Traczyk I

Geometric computation of noodle-forks pairing

Let z_1, z_2, \ldots, z_n be the transversal intersection of N and F, ε_i be the sign of the intersection between T(F) and N at z_i and $e_i = [\gamma_i]$ be the winding number of the loop γ_i around the puncture points p_1, p_2, p_3, p_4 , where γ_i is the composition of three paths h, t_i and n_i : 1) h is a path from p_0 to z along the handle of F (see Figure a); 2) t_i is a path from z_i to z_i along the time T(F) (see Figure b); 3) n_i is a path from z_i to p_0 along the noodle N (see Figure c):

Images of the Generators σ_1 , σ_2 , σ_3 of the 4-Braid group B_4

 $a: e_1 = -1$ $b: \gamma_1 = n_1 * t_1 * h; \varepsilon_1 = 1$

The intersection of the time $T(F_1\sigma_1)$ of the fork $F_1\sigma_1$ and the noodle N_1 at point z_1 is negative which means that $\varepsilon_i = -1$ (see Figure a).

Images of the Generators σ_1 , σ_2 , σ_3 of the 4-Braid group B_4

 $a: e_1 = -1$ $b: \gamma_1 = n_1 * t_1 * h; \varepsilon_1 = 1$

The intersection of the time $T(F_1\sigma_1)$ of the fork $F_1\sigma_1$ and the noodle N_1 at point z_1 is negative which means that $\varepsilon_i = -1$ (see Figure a). The winding number e_1 of the loop γ_1 (see Figure b) around puncture points equals 1.

Images of the Generators σ_1 , σ_2 , σ_3 of the 4-Braid group B_4

 $a: e_1 = -1$ $b: \gamma_1 = n_1 * t_1 * h; \varepsilon_1 = 1$

The intersection of the time $T(F_1\sigma_1)$ of the fork $F_1\sigma_1$ and the noodle N_1 at point z_1 is negative which means that $\varepsilon_i = -1$ (see Figure a). The winding number e_1 of the loop γ_1 (see Figure b) around puncture points equals 1. Therefore

$$\rho_{11}(\sigma_1) = \langle N_1, F_1 \sigma_1 \rangle = -t$$

Geometric colsulation of $\rho_{ij}(\sigma)$

Lemma

Let $\sigma \in B_n$. Then for $1 \leq i, j \leq n-1$, the entry $\rho_{ij}(\sigma)$ of its Burau matrix $\rho(\sigma)$ is given by

 $\rho_{ij}\left(\sigma\right) = \left\langle N_i, F_j \sigma \right\rangle.$

 $15 \ 16$

¹⁵[Big] Stephen Bigelow. The Burau representation is not faithful for n = 5. Geom. Topol. 3 (1999), 397-404

¹⁶[Mat-Ito] Matthieu Calvez and Tetsuya Ito. Garside-theoretic analysis of Burau representations. arXiv:1401.2677v2

Anzor Beridze and Paweł Traczyk I

Geometric colsulation of $\rho_{11}(\sigma_1)$

Under the convention adopted we have:

$$\rho(\sigma_1) = \begin{pmatrix} -t & t & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}, \rho(\sigma_2) = \begin{pmatrix} 1 & 0 & 0\\ 1 & -t & t\\ 0 & 0 & 1 \end{pmatrix}$$

and

$$\rho(\sigma_3) = \left(\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & -t \end{array}\right).$$

 $17\ 18$

¹⁷[Ber-Tra.2] Beridze, A.; Traczyk, P. Forks, noodles and the Burau representation for n = 4. Trans. A. Razmadze Math. Inst. 172 (2018), no. 3, part A, 337–353. ¹⁸[Dav] L. Davitaddze, Braid groups and Burau representation. Bachelor thesis, Batumi, 2019

Anzor Beridze and Paweł Traczyk I

Let $\varphi: B_4 \to B_3$ be the homomorphism defined by

$$\varphi(\sigma_1) = \sigma_1, \quad \varphi(\sigma_2) = \sigma_2, \quad \varphi(\sigma_3) = \sigma_1.$$

The kernel of φ is known to be a free group F(a, b) of two generators [Bok-Ves];

$$a = \sigma_1 \sigma_2 \sigma_3^{-1} \sigma_1 \sigma_2^{-1} \sigma_1^{-1}, \ b = \sigma_3 \sigma_1^{-1}.$$

Let $\varphi: B_4 \to B_3$ be the homomorphism defined by

$$\varphi(\sigma_1) = \sigma_1, \quad \varphi(\sigma_2) = \sigma_2, \quad \varphi(\sigma_3) = \sigma_1.$$

The kernel of φ is known to be a free group F(a, b) of two generators [Bok-Ves];

$$a = \sigma_1 \sigma_2 \sigma_3^{-1} \sigma_1 \sigma_2^{-1} \sigma_1^{-1}, \ b = \sigma_3 \sigma_1^{-1}.$$

This was proved by L. Bokut and A. Vesnin [Bok-Vis].

19

We will refer to a and b as the Bokut–Vesnin generators:

$$a = \sigma_1 \sigma_2 \sigma_3^{-1} \sigma_1 \sigma_2^{-1} \sigma_1^{-1}, \ b = \sigma_3 \sigma_1^{-1}.$$

²⁰[Ber-Tra.2] Beridze, A.; Traczyk, P. Forks, noodles and the Burau representation for n = 4. Trans. A. Razmadze Math. Inst. 172 (2018), no. 3, part A, 337-353.

Anzor Beridze and Paweł Traczyk I

We will refer to a and b as the Bokut–Vesnin generators:

$$a = \sigma_1 \sigma_2 \sigma_3^{-1} \sigma_1 \sigma_2^{-1} \sigma_1^{-1}, \ b = \sigma_3 \sigma_1^{-1}.$$

The generators a and b are in fact much more similar than they look at the first glance:

20

²⁰[Ber-Tra.2] Beridze, A.; Traczyk, P. Forks, noodles and the Burau representation for n = 4. Trans. A. Razmadze Math. Inst. 172 (2018), no. 3, part A, 337–353.

Proposition

The kernel $\ker \rho_4$ of the Burau representation map

$$\rho_4: B_4 \to GL\left(3, \ \mathbb{Z}\left[t, t^{-1}\right]\right)$$

is a subgroup of the kernel $\ker \varphi$ of the map $\varphi:B_4\to B_3,$ defined above by

$$\varphi(\sigma_1) = \sigma_1, \quad \varphi(\sigma_2) = \sigma_2, \quad \varphi(\sigma_3) = \sigma_1.$$

Therefore

$$\ker \rho_4 \subset \ker \varphi$$

Proof. Let us make a slight detour into the realm of the Temperley-Lieb algebras TL_3 and TL_4 . The Temperley-Lieb algebra TL_n is defined as an algebra over $\mathbb{Z}[t, t^{-1}]$. It has n-1 generators $\{U_i^i\}_{i=1}^{n-1}$, and the following relations:

$$\begin{array}{l} ({\rm TL1}) \ U_i^i U_i^i = (-t^{-2} - t^2) U_i^i, \\ ({\rm TL2}) \ U_i^i U_j^j U_i^i = U_i^i, \ {\rm for} \ |i-j| = 1, \\ ({\rm TL3}) \ U_i^i U_j^j = U_j^j U_i^i, \ {\rm for} \ |i-j| > 1. \end{array}$$

Proof. Let us make a slight detour into the realm of the Temperley-Lieb algebras TL_3 and TL_4 . The Temperley-Lieb algebra TL_n is defined as an algebra over $\mathbb{Z}[t, t^{-1}]$. It has n-1 generators $\{U_i^i\}_{i=1}^{n-1}$, and the following relations:

$$\begin{array}{l} ({\rm TL1}) \ U_i^i U_i^i = (-t^{-2} - t^2) U_i^i, \\ ({\rm TL2}) \ U_i^i U_j^j U_i^i = U_i^i, \ {\rm for} \ |i-j| = 1, \\ ({\rm TL3}) \ U_i^i U_j^j = U_j^j U_i^i, \ {\rm for} \ |i-j| > 1. \end{array}$$

Let us consider the homomorphism $\psi: TL_4 \to TL_3$ defined by

$$U_1^1 \to U_1^1, \ U_2^2 \to U_2^2, \ U_3^3 \to U_1^1.$$

Let $\theta: B_n \to TL_n$ be the Jones' representation defined by sending σ_i to $A + A^{-1}U_i^i$. It is known (see [Big.2], Proposition 1.5) that for n = 3, 4 we have ker $\theta_n = \ker \rho_n$. Moreover, the following diagram is obviously commutative:

²¹[Big.2] Stephen Bigelow. Does the Jones polynomial detect the unknot? J. Knot Theory and Ramifications (A) 11 (2002), A93-505

Let us consider the homomorphism $\psi: TL_4 \to TL_3$ defined by

$$U_1^1 \to U_1^1, \ U_2^2 \to U_2^2, \ U_3^3 \to U_1^1.$$

Let $\theta: B_n \to TL_n$ be the Jones' representation defined by sending σ_i to $A + A^{-1}U_i^i$. It is known (see [Big.2], Proposition 1.5) that for n = 3, 4 we have ker $\theta_n = \ker \rho_n$. Moreover, the following diagram is obviously commutative:

The representation θ_3 is faithful and therefore ker $\rho_4 = \ker \theta_4 \subset \ker \varphi$.

²¹[Big.2] Stephen Bigelow. Does the Jones polynomial detect the unknot? J. Knot Theory and Ramifications (4) 11 (2002), 493-505

Images of The Bokut-Vesnin generators

Under the convention adopted we have:

$$A = \rho(a) = \begin{pmatrix} -t+1 & 0 & -1 \\ -t+t & -t & 0 \\ -t & 0 & 0 \end{pmatrix}, \quad B = \rho(b) = \begin{pmatrix} -t^{-1} & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & -t \end{pmatrix}$$

 $22 \ 23$

 $^{22}[\text{Ber-Tra.3}]$ Beridze, A.; Traczyk, P. On the Burau representation for n=4. arXiv:1904.11730

²³[Dav] L. Davitaddze, Braid groups and Burau representation. Bachelor thesis, Batumi, 2019

Anzor Beridze and Paweł Traczyk I

Turning the punctured disk D_4 by ninety degrees

Let t be a transformation of D_4 , which has the following form:

 $24 \ 25$

 $^{24}[\text{Ber-Tra.3}]$ Beridze, A.; Traczyk, P. On the Burau representation for n=4. arXiv:1904.11730

²⁵[Dav] L. Davitaddze, Braid groups and Burau representation. Bachelor thesis, Batumi, 2019

Anzor Beridze and Paweł Traczyk I

Turning the punctured disk D_4 by ninety degrees

Therefore, t is reresantatiove of the braid is $\sigma_1 \sigma_2 \sigma_3$:

 $26\ 27$

 $^{26}[\text{Ber-Tra.3}]$ Beridze, A.; Traczyk, P. On the Burau representation for n=4. arXiv:1904.11730

²⁷[Dav] L. Davitaddze, Braid groups and Burau representation. Bachelor thesis, Batumi, 2019

Anzor Beridze and Paweł Traczyk I

Conjugating a, a^{-1} and b^{-1} to b

It is easy to check that the following conditions are satisfied:

$$a = t^{-1}bt$$
, $a^{-1} = tbt^{-1}$, $b^{-1} = t^2bt^2$.

Anzor Beridze and Paweł Traczyk I

Conjugating a^{-1} to b

Batumi, Georgia July 7, 2019

注▶ ▲注▶ 注 のへで

Lemma

There exists a matrix T which satisfies the following equality:

$$A = TBT^{-1}, \quad A^{-1} = T^{-1}BT, \quad B^{-1} = T^2BT^2.$$
(3)

The considered matrix T is of order four as an element of the group $GL\left(3, \mathbb{Z}\left[t, t^{-1}\right]\right)$.

28

 $^{28}[\text{Ber-Tra.3}]$ Beridze, A.; Traczyk, P. On the Burau representation for n=4. arXiv:1904.11730

Anzor Beridze and Paweł Traczyk I

Conjugating A, A^{-1} and B^{-1} to B

Proof the matrices A, B, A^{-1} and B^{-1} have the same eigenvalues $-t^{-1}, -t$ and 1. Therefore, they are conjugate to the same diagonal matrix:

$$\Delta = \begin{bmatrix} -t^{-1} & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & -t \end{bmatrix}$$

Conjugating A, A^{-1} and B^{-1} to B

Proof the matrices A, B, A^{-1} and B^{-1} have the same eigenvalues $-t^{-1}, -t$ and 1. Therefore, they are conjugate to the same diagonal matrix:

$$\Delta = \begin{bmatrix} -t^{-1} & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & -t \end{bmatrix}$$

Let us consider transformation matrices T_A and T_B

$$T_A = \begin{bmatrix} -1 & t^{-1} & 0 \\ -1 & t^{-1} - 1 & 1 \\ -1 & -1 & 0 \end{bmatrix}, \quad T_B = \begin{bmatrix} 1 & 1 & 0 \\ 0 & t^{-1} + 1 & 0 \\ 0 & t^{-1} & 1 \end{bmatrix}.$$

Therefore, the following equalities hold:

$$A = T_A \Delta T_A^{-1}, \quad B = T_B \Delta T_B^{-1}.$$

Hence, we obtain that

$$A = T_A T_B^{-1} B T_B T_A^{-1}.$$

Let $T = T_A T_B^{-1}$, then we have:

$$T = \rho(t) = \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \\ -1 & 0 & 0 \end{bmatrix}.$$

Anzor Beridze and Paweł Traczyk I

Let $T = T_A T_B^{-1}$, then we have:

$$T = \rho(t) = \begin{bmatrix} -1 & 1 & 0\\ -1 & 0 & 1\\ -1 & 0 & 0 \end{bmatrix}.$$

On the other hand, direct calculation shows that

 $T^4 = \mathbf{1}, \quad A = T^{-1}BT, \quad A^{-1} = TBT^{-1}, \quad B^{-1} = T^2BT^2.$

Anzor Beridze and Paweł Traczyk I

Corollary

Let w be a formally irreducible non-empty word in letters A, B, A^{-1} and B^{-1} with suffix $B^i, i \ge 1$. Then the corresponding product of matrices A, B, A^{-1} and B^{-1} may be written in the form $T^{m_{k+1}}B^{n_{k+1}}T^{m_k}B^{n_k}\cdots T^{m_2}B^{n_2}T^{m_1}B^{n_1}$ $n_i \in N, m_i \in \{-1, 1\},$ $m_{k+1} \in \{-1, 0, 1, 2\}.$

30

 $^{30}[\text{Ber-Tra.3}]$ Beridze, A.; Traczyk, P. On the Burau representation for n=4. arXiv:1904.11730

Anzor Beridze and Paweł Traczyk I

s-**pattern:** This means a one column matrix in which the position of entries with minimum degree (in the first column of the considered matrix) are checked.

Anzor Beridze and Paweł Traczyk I

s-pattern: This means a one column matrix in which the position of entries with minimum degree (in the first column of the considered matrix) are checked. For example $\begin{bmatrix} v \\ \circ \\ \circ \end{bmatrix}$ means that in the first column of the considered matrix there is a single entry of the smallest degree and that it is in position (1, 1).

Anzor Beridze and Paweł Traczyk I

s-pattern: This means a one column matrix in which the position of entries with minimum degree (in the first column of the considered matrix) are checked. For example $\begin{bmatrix} \sqrt{} \\ \circ \end{bmatrix}$ means that in the first column of the considered matrix there is a single entry of the smallest degree and that it is in position (1, 1). Altogether seven possible s-patterns exist as given below:

$$\begin{bmatrix} \circ \\ \circ \\ \checkmark \end{bmatrix}, \begin{bmatrix} \circ \\ \checkmark \\ \circ \end{bmatrix}, \begin{bmatrix} \circ \\ \checkmark \\ \checkmark \end{bmatrix}, \begin{bmatrix} \circ \\ \checkmark \\ \checkmark \end{bmatrix}, \begin{bmatrix} \checkmark \\ \circ \\ \circ \\ \checkmark \end{bmatrix}, \begin{bmatrix} \circ \\ \circ \\ \checkmark \end{bmatrix}, \begin{bmatrix} \checkmark \\ \checkmark \\ \checkmark \end{bmatrix}$$

31

transformations of s-patterns — multiplication by B

Multiplication by B from the left side may affect s-patterns as illustrated in Figure:

Figure 3: transformations of s-patterns — multiplication by B

transformations of s-patterns — multiplication by T

Multiplication by T may affect s-patterns as illustrated in Figure:

Figure 4: transformations of s-patterns — multiplication by T

Lemma

Let
$$M$$
 be a matrix of s -pattern $\begin{bmatrix} \circ \\ \checkmark \\ \checkmark \end{bmatrix}$ or $\begin{bmatrix} \circ \\ \checkmark \\ \circ \end{bmatrix}$. Then the transformations corresponding to multiplication (step by step) on the left side by $BTBB$ can not be of the following form:

$$\begin{bmatrix} \circ \\ \lor \\ \lor \\ \lor \end{bmatrix} \xrightarrow{B} \begin{bmatrix} \circ \\ \checkmark \\ \checkmark \end{bmatrix} \xrightarrow{B} \begin{bmatrix} \checkmark \\ \lor \\ \lor \\ \lor \end{bmatrix} \xrightarrow{T} \begin{bmatrix} \circ \\ \circ \\ \lor \\ \lor \end{bmatrix} \xrightarrow{B} \begin{bmatrix} \circ \\ \circ \\ \lor \\ \lor \end{bmatrix},$$
$$\begin{bmatrix} \circ \\ \lor \\ \lor \\ \circ \end{bmatrix} \xrightarrow{B} \begin{bmatrix} \circ \\ \lor \\ \lor \\ \lor \end{bmatrix} \xrightarrow{B} \begin{bmatrix} \circ \\ \lor \\ \lor \\ \lor \end{bmatrix} \xrightarrow{T} \begin{bmatrix} \circ \\ \circ \\ \lor \\ \lor \end{bmatrix} \xrightarrow{B} \begin{bmatrix} \circ \\ \circ \\ \lor \\ \lor \end{bmatrix}.$$

32

Main Lemma

Let ω be a word of the letters B, T and T^{-1} of the following form

 $\omega = T^{m_k} B^{n_k} \cdots T^{m_2} B^{n_2} T^{m_1} B^{n_1}, \quad n_i \in \mathbb{N}, \ m_i \in \{-1, 1\}.$ (4)

If for every i we have $n_i \ge 3$, then none of transformations corresponding to any single letter in the considered word is a negative loop.

33

 $\omega = T^{n_{k+1}} B^{m_{k+1}-1} B T^{m_k} B^3 B^{n_k-3} \dots T^{m_2} B^{n_2} T^{m_1} B^{n_1}$

< 🗇 🕨

< ∃⇒

Group generated by A^3 and B^3

Corollary

Let ω be a word of the form

$$\omega = T^{m_{k+1}} B^{n_k} T^{m_k} \cdots T^{m_2} B^{n_2} T^{m_1} B^{n_1} \tag{5}$$

where $n_i \ge 3$ $m_i \in \{-1, 1\}$, $m_{k+1} \in -1, 0, 1, 2$. Then the change in the minimum degree of first column entries caused by multiplication by $T^i B^r$ may be:

- 1. a decrease (possibly by more than 1);
- 2. no change at all;
- 3. an increase by exactly 1.

Group generated by A^3 and B^3

Corollary

Let ω be a word of the form

$$\omega = T^{m_{k+1}} B^{n_k} T^{m_k} \cdots T^{m_2} B^{n_2} T^{m_1} B^{n_1} \tag{5}$$

where $n_i \ge 3$ $m_i \in \{-1, 1\}$, $m_{k+1} \in -1, 0, 1, 2$. Then the change in the minimum degree of first column entries caused by multiplication by $T^i B^r$ may be:

- 1. a decrease (possibly by more than 1);
- 2. no change at all;
- 3. an increase by exactly 1.

Theorem

The matrices A^3 and B^3 generate a non-abelian free group of rank 2.

Thank You!

Anzor Beridze and Paweł Traczyk I

Batumi, Georgia July 7, 2019

< ≣⇒